Stability of an [N/2]-dimensional invariant torus in the Kuramoto model at small coupling

نویسندگان

  • Hayato Chiba
  • Diego Pazó
چکیده

When the natural frequencies are allocated symmetrically in the Kuramoto model there exists an invariant torus of dimension [N/2] + 1 (N is the population size). A global phase shift invariance allows to reduce the model to N − 1 dimensions using the phase differences, and doing so the invariant torus becomes [N/2]-dimensional. By means of perturbative calculations based on the renormalization group technique, we show that this torus is asymptotically stable at small coupling if N is odd. If N is even the torus can be stable or unstable depending on the natural frequencies, and both possibilities persist in the small coupling limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

همگام‌سازی در مدل کوراموتو روی شبکه‌های پیچیده با توزیع فرکانس ذاتی دوقله‌ای

In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...

متن کامل

Chaotic Attractor in the Kuramoto Model

The Kuramoto model of globally coupled phase oscillators is an essentially nonlinear dynamical system with a rich dynamics including synchronization and chaos.We study the Kuramoto model from the standpoint of bifurcation and chaos theory of low-dimensional dynamical systems. We find a chaotic attractor in the four-dimensional Kuramoto model and study its origin. The torus destruction scenario ...

متن کامل

همگام‌سازی در مدل کوراموتو با نیروی وابسته به زمان در شبکه‌های پیچیده

In this paper, a generalization of the Kuramoto model is introduced by explicit consideration of deterministically time-varying periodic external force. In this model, the oscillator's natural frequencies and amplitude of collective oscillations are influenced by external forces with constant or random strengths. Then, the synchronization behavior of forced Kuramoto model is studied in some com...

متن کامل

On the Critical Coupling for Kuramoto Oscillators

The celebrated Kuramoto model captures various synchronization phenomena in biological and man-made dynamical systems of coupled oscillators. It is well-known that there exists a critical coupling strength among the oscillators at which a phase transition from incoherency to synchronization occurs. This paper features four contributions. First, we characterize and distinguish the different noti...

متن کامل

Unstable manifolds of relative periodic orbits in the symmetry-reduced state space of the Kuramoto-Sivashinsky system

Systems such as fluid flows in channels and pipes or the complex Ginzburg-Landau system, defined over periodic domains, exhibit both continuous symmetries, translational and rotational, as well as discrete symmetries under spatial reflections or complex conjugation. The simplest, and very common symmetry of this type is the equivariance of the defining equations under the orthogonal group O(2)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009